Sociohistorical Context & Dialect Diffusion

LINGUIST 159 - American Dialects
October 7, 2014

Joseph Fruehwald on Slate

What's wrong with "America's ugliest accent"

- What is wrong with it?
 "It's a working class language probably is what
 - "It's a working class language, probably, is what it amounts to"
- What's a "standard language ideology"?
- "It's the idea that somewhere out there, there's a perfect, unadulterated version of English, and what your everyday person speaks is a poor copy"
- Why does it have to be so nasty?
- "It's probably in part because standard language ideology gives us almost no other way to talk about accents but negatively."

http://www.talkintarheel.com/chapter/11/video11-6.php

Boston, est. 1620 Southeastern Englai

Phonological:

Lexicon:

nor'easter,

Appalachia
Scots-Irish
/r/-ful,
no PRICE
monophthongization
no "breaking" of front vowels

French (early 18th cent) Acadians (NS, NB) 1765

Source: The Atlas of North American English (Labov, Ash, & Boberg 2005)

Source: The Atlas of North American English (Labov, Ash, & Boberg 2005)

Source: The Atlas of North American English (Labov, Ash, & Boberg 2005)

New Data on American Dialectology

No longer migration/settlement based?

Any questions?

How do dialect patterns spread?

How do dialect patterns spread?

Diffusion: refers to change across communities from contact between communities

- Structural details are lost in diffusion
- Diffusion favors vowel mergers and lexical changes
- Horizonal (geographic) and Vertical (social)

Transmission: refers to change within a speech community, the product of a child's language learning

intricate structural details are preserved

What are some plausible diffusion models?

BRAINSTORM

Contagious Diffusion (Wave Model)

Change radiates from a central or focal point in a wave-like fashion.

Figure 5.12 Wave model of language change in time and space

Contagious Diffusion (Wave Model)

Example: short /ae/ tensing in NYC (Labov 2007) can (V) vs. tin can; cash vs. cashew

Spread to New Jersey but NO:

Function-word constraint: Function words with simple codas have lax short-/ae/, content words are tense

Spread to Albany, but NO:

Open-syllable constraint: Short-/ae/ is lax in open syllables, yielding tense *ham*, *plan*, *cash*, but tense in closed syllables.

Five factors influence diffusion of customs, ideas, and practices (and language?):

- 1. The phenomenon itself
- 2. Communication networks
- 3. Distance
- 4. Time
- 5. Social structure (Rogers 2003)

Hierarchical Diffusion (Gravity Model)

Diffusion is a function, not only of the distance from one point to another, but also of population density of areas to be affected by nearby change. It begins in large, heavily populated areas; from there radiating out to moderately sized cities, leaving sparsely populated areas unaffected—not waves, but skipping stones—a hierarchical pattern—socalled

Hierarchical Diffusion (Gravity Model)

Figure 5.16 Hierarchical model of dialect diffusion

Hierarchical Diffusion (Gravity Model)

Example: Northern Cities Vowel Shift (NCS)*

Contrahierarchical Diffusion

The opposite of hierarchical diffusion. Change spreads across rural communities first, then into urban centers.

Examples: "fixin' to" (Preston)

"might could" (NC)

Ideal Change Model

Stage	Stage of Change	E ₁	E ₂
1	Categorical status, before undergoing change	X	Х
2	Early stage begins variably in restricted environment	X>Y	X
3	Change in full progress, greater use of new form in E_1 where change first initiated	Y>X	X>Y
4	Change progresses toward completion with movement toward categorically first in E_1 where change initiated	Y	Y>X
5	Completed change, new variant	Υ	Υ

Ideal Change Model

Stage	Onset h deletion in English	Unstr essed	Stres sed
1	Earliest stage, before undergoing change	1	1
2	Earlier stage at start of h loss	0>1	1
3	Change in full progress, h still exhibited by some older speakers in isolated dialect areas	1>0	0>1
4	Change progresses toward completion <i>h</i> exhibited in restricted environment by some speakers in isolated dialect	0	0>1
5	Completed change, includes most English dialects outside of isolated regions	0	0

Change slope hypothesis

Like diffusion through a social spectrum, spatial diffusion takes place in a three-part temporal process that simulates an S curve, with a period of infancy, of slow expansion, during which the trait is relatively uncommon; a middle period of rapid expansion after a critical threshold has been reached; and a later period of saturation and filling in as potential adopters become scarce.

(Bailey, Wikle, Tillery, and Sand 1993: 366)

Change slope hypothesis

Table 2: Overall distribution of quotative verbs in younger and older speakers in AmE, EngE, and NZE

Buchstaller and D'Arcy (2009)

Data from 1990s

	Older		Younger		
	%	N	%	N	
a: In AmE					
be like	3.6	16	13.6	89	
think	10.5	46	7.6	50	
say	53.0	233	35.2	231	
go	2.0	9	7.2	47	
Ø	15.2	67	20.0	131	
be	3.0	13	3.2	21	
Other	12.7	56	13.3	87	
Total		440		656	
b: In EngE					
be like	0.5	4	7.0	92	
think	7.6	55	9.1	120	
say	68.0	495	37.1	487	
go	2.1	15	20.0	263	
Ø	16.5	120	19.9	262	
be	1.8	13	4.3	56	
Other	3.6	26	2.6	34	
Total		728		1314	
c: In NZE					
be like	0.0	0	6.1	38	
think	14.6	94	22.7	142	
say	77.5	499	39.0	244	
go	0.8	5	18.6	116	
Ø	5.3	34	9.8	61	
be	0.0	O	1.0	6	
Other	1.9	12	2.9	18	
Total		644		625	

Tagliamonte and Denis (2014)

Data from 2005-2010

FIGURE 14. Scatterplot of individuals' frequency of be like across apparent time in SE Ontario.

	be	like	Sa	ıy	g	go.	thi	nk	Q	ý	ot	her
	%	N	%	N	%	N	%	N	%	N	%	N
TOR	63.7	2,093	13.3	436	3.4	112	3.0	99	12.0	396	4.6	152
BLV	19.6	177	44.1	397	3.4	31	8.8	79	20.6	186	3.4	31
BTR	40.4	175	41.8	181	2.1	9	6.5	28	6.9	30	2.3	10
LKF	14.6	29	53.3	106	1.5	3	9.5	19	16.6	33	4.5	9

TABLE 5. Overall distribution of quotative forms in Toronto, Belleville, Burnt River, and Lakefield.

Data from 2005-2010

Tagliamonte and Denis (2014)

Table 8: Calculation of transfer for *be like* from AmE into NZE and EngE

	Form	Constraints	Ranking of constraints	Hierarchy of constraints	Overall
Person					
$\mathbf{U}\mathbf{K}$	X	X	X	X	4
NZ	X	X	X	X	4
Mimesis					
UK	X	X	-	X	3
NZ	X	X	-	X	3
Content					
$\mathbf{U}\mathbf{K}$	X	X	-	X	3
NZ	X	X	-	X	3
Tense					
$\mathbf{U}\mathbf{K}$	X	X	-	-	2
NZ	X	X	-	-	2

Buchstaller and D'Arcy (2009)

Data from 1990s